
Relational Implementation of
EMdF and MQL

Ulrik Petersen

April 27, 2013

1

Copyright (C) 2001-2018 Ulrik Sandborg-Petersen
Copyright (C) 2018-present Sandborg-Petersen Holding ApS

This document is made available under the Creative Commons Attribution-
Sharealike International Public License version 4.0.

See

https://creativecommons.org/licenses/by-sa/4.0/

for what that means.

Please visit the Emdros website for the latest news and downloads:

http://emdros.org

Abstract

In this report, I document some of my ideas on implementing the EMdF model in an RDBMS.
The emphasis is on showing how the data domains of the EMdF model can be implemented in
tables, using SQL2. It documents Emdros version 1.2.0.pre208 and above.

In chapter 1, I give some preliminaries, including conventions used in this document. In
chapter 2, I show how to implement the meta-data of the EMdF model in an RDBMS. In chapter
3, I show how to implement the objects in the EMdF model. In chapter 4, I show the way in
which all of the commands of the full MQL access language translate into SQL statements.

Contents

1 Preliminaries 6
1.1 Introduction . 6
1.2 Assumptions on the implementation . 6

1.2.1 The three sequences of ids . 6
1.2.2 All names are stored as lower-case . 6

1.3 Conventions used . 7

2 Meta-data 8
2.1 Introduction . 8
2.2 schema_version . 9

2.2.1 SQL template . 9
2.2.2 Explanation . 9
2.2.3 Example . 9

2.3 sequence_0, sequence_1, and sequence_2 . 9
2.3.1 SQL template . 9
2.3.2 Explanation . 10
2.3.3 Example . 10

2.4 enumerations . 10
2.4.1 SQL template . 10
2.4.2 Explanation . 10
2.4.3 Example . 11

2.5 enumeration_constants . 11
2.5.1 SQL template . 11
2.5.2 Explanation . 11
2.5.3 Example . 13

2.6 object_types . 13
2.6.1 SQL template . 13
2.6.2 Explanation . 13
2.6.3 Example . 14

2.7 normalized_object_type_names . 14
2.7.1 SQL template . 14
2.7.2 Explanation . 14

2.8 features . 15

1

CONTENTS 2

2.8.1 SQL template . 15
2.8.2 Explanation . 15
2.8.3 Example . 17

2.9 min_m . 17
2.9.1 SQL template . 17
2.9.2 Explanation . 17
2.9.3 Example . 17

2.10 max_m . 18
2.10.1 SQL template . 18
2.10.2 Explanation . 18
2.10.3 Example . 18

2.11 monad sets . 18
2.11.1 SQL template . 18
2.11.2 Explanation . 18
2.11.3 Example . 19

3 Object_dm data 20
3.1 Introduction . 20
3.2 OT_objects . 21

3.2.1 SQL template . 21
3.2.2 Explanation . 21
3.2.3 Example . 22

3.3 Monad set encoding . 22
3.4 OT_mdf_FEATURE_NAME_set . 23

3.4.1 SQL template . 23
3.4.2 Explanation . 24
3.4.3 Example . 24

4 Implementing the MQL commands 26
4.1 Introduction . 26
4.2 Database manipulation . 26

4.2.1 CREATE DATABASE . 26
4.2.2 USE DATABASE . 28
4.2.3 DROP DATABASE . 29

4.3 Object type manipulation . 30
4.3.1 CREATE OBJECT TYPE . 30
4.3.2 UPDATE OBJECT TYPE . 32
4.3.3 DROP OBJECT TYPE . 33

4.4 Enumeration manipulation . 34
4.4.1 CREATE ENUMERATION . 34
4.4.2 UPDATE ENUMERATION . 35
4.4.3 DROP ENUMERATION . 37

4.5 Segment manipulation . 38

CONTENTS 3

4.5.1 CREATE SEGMENT . 38
4.6 Querying . 39

4.6.1 SELECT OBJECTS . 39
4.6.2 SELECT OBJECTS AT . 40
4.6.3 SELECT OBJECT TYPES . 40
4.6.4 SELECT FEATURES . 41
4.6.5 SELECT ENUMERATIONS . 42
4.6.6 SELECT ENUMERATION CONSTANTS 42
4.6.7 SELECT OBJECT TYPES USING ENUMERATION 43

4.7 Object manipulation . 44
4.7.1 CREATE OBJECT FROM MONADS 44
4.7.2 CREATE OBJECT FROM ID_DS . 45
4.7.3 CREATE OBJECT FROM (focus | all |) QUERY 46
4.7.4 UPDATE OBJECTS BY MONADS . 47
4.7.5 UPDATE OBJECTS BY ID_DS . 48
4.7.6 UPDATE OBJECTS BY (focus | all |) QUERY 49
4.7.7 DELETE OBJECTS BY MONADS . 50
4.7.8 DELETE OBJECTS BY ID_DS . 50
4.7.9 DELETE OBJECTS BY (focus | all |) QUERY 51

4.8 Feature manipulation . 52
4.8.1 GET FEATURES . 52

List of Tables

2.1 enumeration_constants example . 12
2.2 Bit-set flags for object_types table and object ranges 13
2.3 Bit-set flags for object_types table and monad uniqueness 13
2.4 Bit-set flags for object_types table and the property of whether the OT name is a

string or a plain identifier . 14
2.5 object_types example . 14
2.6 Feature type ids for standard atomic types . 16
2.7 Feature type flags for standard atomic types . 16
2.8 Examples of features. Note how the feature_type_id has the value of 1 for strings

(see table 2.6). 17
2.9 Example of min_m . 17
2.10 Example of min_m . 18

3.1 SQL types corresponding to EMdF types . 22
3.2 Example of OT_Objects (Phrase_Objects) . 22

4

List of Figures

5

Chapter 1

Preliminaries

1.1 Introduction
In this report, it is my aim to succinctly describe most of my ideas on how to implement the
EMdF model in a Relational Database Management System, using a subset of SQL2.

The data is split into two neatly segregated kinds of data:

• meta-data and

• object_dm data.

The meta-data maintains information about object types, enumerations, and sequences of ids.
The object_dm data is made on a per-object type basis. The structure of this report reflects this
segregation: chapter 2 deals with meta-data, whereas chapter 3 deals with object_dm data.

Chapter 4 details how to implement all of the MQL statements using SQL2.
In this chapter, I give some preliminaries.

1.2 Assumptions on the implementation

1.2.1 The three sequences of ids
Three sequences of ids are assumed to exist in each EMdF database: One sequence for assigning
object id_ds, one sequence for assigning type ids (object type ids, enumeration type ids, and
feature type ids), and one for everything else (see section 2.3).

When autogenerating an id from a given sequence, we read the number of the relevant se-
quence from this table, and update the tuple with this value plus one, ready for next time we need
an autogenerated id.

1.2.2 All names are stored as lower-case
The names of all object types, enumerations, and features are stored as all-lower-case. This
makes it easy to search for them later. However, enumeration constants are case-sensitive, so

6

CHAPTER 1. PRELIMINARIES 7

they are not stored lower-case.

1.3 Conventions used
I employ a number of conventions in this document:

1. Throughout, the shorthand “OT” is used to mean “Object Type.” This is especially impor-
tant in SQL templates.

2. When referring to tables in the text, the tables are in the modern typeface, and are enclosed
in “double quotes.”

3. When referring to table attributes in the text, the attributes are in the typewriter typeface,
and are enclosed in “double quotes”

4. In SQL code, anything enclosed in { curly braces } is meant to be replaced with a value de-
scribed within the curly braces. E.g., “SET is_true = { 0 | 1 }” means that, when executing
the SQL code, the value used to set “is_true” must be either “0” or “1”.

5. Throughout, examples of table data are given. Where ids are involved, the ids are meant to
be consistent throughout this document, so that you should be able to follow the references
to the right tuples.

Chapter 2

Meta-data

2.1 Introduction
This chapter, I detail all of the tables necessary for maintaining the meta-data in the EMdF
database. For each table, I write on three subjects:

1. An SQL template for creating the table,

2. An explanation, including a rationale, and

3. An example, to show the theory in practice.

The following tables are needed for storing meta-data:

• schema_version

• database_metadata

• sequence_0

• sequence_1

• sequence_2

• enumerations

• enumeration_constants

• object_types

• features

• min_m

• max_m

8

CHAPTER 2. META-DATA 9

• monad_sets

• OT_objects

These will be described in turn below.

2.2 schema_version

2.2.1 SQL template
CREATE TABLE schema_version (

dummy_id INTEGER PRIMARY KEY NOT NULL,
schema_version INT NOT NULL

);

2.2.2 Explanation
This table contains, in numerical form, the version of the schema in use. The values are defined
in emdf.h in the sources. This was added in version 1.2.0.pre59. The dummy_id is always 0, and
there is always exactly one row in the table.

2.2.3 Example
The table looks like this:

dummy_id schema_version
0 5

2.3 sequence_0, sequence_1, and sequence_2

2.3.1 SQL template
CREATE TABLE sequence_0 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_1 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_2 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);

CHAPTER 2. META-DATA 10

2.3.2 Explanation
These tables are for maintaining information on the three sequences of ids that must exist in an
EMdF database. See section 1.2.1 for background information.

The “sequence_id” attribute is meant to take on one of the following two values:

Value C/C++ preprocessor #DEFINE Meaning
0 SEQUENCE_OBJECT_ID_DS The sequence is for object id_ds
1 SEQUENCE_TYPE_IDS The sequence for object type ids, enumeration type ids, and feature type ids
2 SEQUENCE_OTHER_IDS The sequence is for all other ids

The “sequence_value” attribute then lists the value of the next id to be taken for that
sequence.

All three must be initialized to 1. However, when drawing from SEQUENCE_TYPE_IDs,
the actual value will be shift-lefted SEQUENCE_TYPE_IDS_FREE_LOWER_BITS. This is
currently 16, meaning that the seuqence can in reality only go as far as 2^15 (32768) before
wrapping around into negative numbers.

NOTE: This may be implemented differently for each backend.

2.3.3 Example
The tables should look like this right after initialization of the database:

sequence_id sequence_value
0 1

sequence_id sequence_value
1 1

sequence_id sequence_value
2 1

2.4 enumerations

2.4.1 SQL template
CREATE TABLE enumerations (

enum_id INTEGER PRIMARY KEY NOT NULL,
enum_name VARCHAR(255) NOT NULL

);

2.4.2 Explanation
This table is the master table for the data domain of enumerations. It lists, for each enumeration in
the database, its enum_id and its human-readable name. Another table, “enumeration_constants,”
then lists all of the constants for each enumeration type.

CHAPTER 2. META-DATA 11

The “enum_id” attribute is taken from the “sequence_1” table, i.e., from the SEQUENCE_TYPE_IDS
sequence.

The “enum_name” attribute is what the user entered when creating the enumeration.

2.4.3 Example
As an example, the following enumerations might be defined:

enum_id enum_name
65536 phrase_type_t

131072 part_of_speech_t
983040 clause_type_t

...
...

2.5 enumeration_constants

2.5.1 SQL template
CREATE TABLE enumeration_constants (

enum_id INT NOT NULL,
enum_value_name VARCHAR(255) NOT NULL,
value INT NOT NULL,
is_default CHAR(1) NOT NULL,
PRIMARY KEY (enum_id, enum_value_name)

);

2.5.2 Explanation
This table lists, for each enumeration specified in the table “enumerations,” data pertaining to all
of the constants in the enumeration:

• The enum_id (see below).

• The human-readable name of the constant (“enum_value_name”),

• The value itself (“value”), and

• A boolean specifying whether this is the default or not (“is_default”). The only valid
values for this attribute are ’Y’ and ’N’.

The enum_ids are drawn from SEQUENCE_TYPE_IDS, but of course shift-lefted as explained
in Section 2.3 which starts on page 9.

CHAPTER 2. META-DATA 12

enum_id enum_value_name value default_value
65536 ptNotAppliccable -1 ’Y’
65536 VP 1 ’N’
65536 NP 2 ’N’
65536 NPpers 3 ’N’

...
...

...
...

131072 pspNotAppliccable -1 ’Y’
131072 psp_article 0 ’N’
131072 psp_verb 1 ’N’
131072 psp_noun 2 ’N’
131072 psp_proper_noun 3 ’N’
131072 psp_adverb 4 ’N’

...
...

...
...

196608 prsNotAppliccable -1 ’Y’
196608 prs_singular 1 ’N’
196608 prs_dual 2 ’N’
196608 prs_plural 3 ’N’

...
...

...
...

262144 gndNotAppliccable -1 ’Y’
262144 gnd_masculine 1 ’N’
262144 gnd_feminine 2 ’N’

...
...

...
...

983040 ct_Way0 1 ’N’
983040 ct_Xqtl 2 ’N’

...
...

...
...

Table 2.1: enumeration_constants example

CHAPTER 2. META-DATA 13

#define value meaning
OT_RANGE_MASK 0x00000007 Bit-mask for these values
OT_WITH_MULTIPLE_RANGE_OBJECTS 0x00000000 Object type has multiple-range objects
OT_WITH_SINGLE_RANGE_OBJECTS 0x00000001 Object type has single-range objects
OT_WITH_SINGLE_MONAD_OBJECTS 0x00000002 Object type has single-monad objects

Table 2.2: Bit-set flags for object_types table and object ranges

#define value meaning
OT_MONAD_UNIQUENESS_MASK 0x00000078 Bit-mask for these values
OT_WITHOUT_UNIQUE_MONADS 0x00000000 Monads may not be unique
OT_HAVING_UNIQUE_FIRST_MONADS 0x00000008 All first monads are unique
OT_HAVING_UNIQUE_FIRST_AND_LAST_MONADS 0x00000010 All first and last monads are unique

Table 2.3: Bit-set flags for object_types table and monad uniqueness

2.5.3 Example
For the two enumerations defined in the previous section, the values in table 2.1 might be defined.

2.6 object_types

2.6.1 SQL template
CREATE TABLE object_types (

object_type_id INTEGER PRIMARY KEY NOT NULL,
object_type_name VARCHAR(255) NOT NULL,
object_type_flags INT NOT NULL

);

2.6.2 Explanation
This table is the master table for object types. It stores, for each object type, its id, its human-
readable name, and an “INT”-encoded set of integers of flags. The id is autogenerated, upon cre-
ation of the object type, from the “sequence_1” table, i.e., using the “SEQUENCES_TYPE_IDS”
sequence. The flags are taken from Tables 2.2 and 2.3. Note that the flags in Table 2.2 are not
bitfield flags, but form three-bit integer. The flags in Table 2.3 form a four-bit integer, and the
flags in Table 2.4 form a two-bit integer.

Special mention should be made of the bit-set in Table 2.4. As will be shown in Section
XXX, the object type names sometimes map to their lower-case equivalents, and sometimes to a
name derived from a CRC32-hash of the original name.

CHAPTER 2. META-DATA 14

#define value meaning
OT_NAME_IS_STRING_MASK 0x00000300 Bit-mask for this property
OT_NAME_IS_STRING 0x00000100 This OT name is a string, and is therefore mapped to a CRC32 value

Table 2.4: Bit-set flags for object_types table and the property of whether the OT name is a string
or a plain identifier

2.6.3 Example
Table 2.5 shows some sample object types.

type_id type_name object_type_flags
327680 Word 0x00000001
851968 Phrase 0x0
1048576 Clause 0x0

...
...

...

Table 2.5: object_types example

2.7 normalized_object_type_names

2.7.1 SQL template
CREATE TABLE normalized_object_type_names (

object_type_id INT NOT NULL,
object_type_name VARCHAR(255) NOT NULL,
normalized_object_type_name VARCHAR(255) NOT NULL,
PRIMARY KEY (object_type_id)

);

2.7.2 Explanation
Whenever an object type name is a C identifier “A”, the name used for the table to hold the objects
of that feature is formed as “A’_objects”, where A’ is the lowercased version of A. However,
starting with Emdros version 3.2.1.pre16, it is possible to use arbitrary strings as object type
names. Since many database backends cannot use arbitrary strings in the table names, we need
a way of mapping the “real”, MQL-defined object type name to something that will be accepted
by the database backend.

Thus the EMdF backend “normalizes” object type names before forming database table
names. The algorithm used to determine the normalized object type name is as follows:

1. Let OT = the object type name as given in the MQL.

CHAPTER 2. META-DATA 15

2. Let OTL = OT, with all ASCII capital letters lower-cased.

3. If OTL is a C identifier (i.e., starts with a letter or an underscore, and consists only of (in
this case, lower-case) letters, underscores, and digits 0-9), then return OTL. Otherwise, go
on

4. Let CRC = the 8-character lower-case hexadecimal representation of the CRC32 hash of
the string (“EMdF” + OTL), as defined in EMdF/crc32.cpp.

5. return “ot” + CRC.

The result of this algorithm is then used to form the table name for the object tables, as well as
any other table names, such as sets for sets of strings. For object tables, the method is to prepend
“_objects” to the normalized table name.

Before Emdros version 3.2.1.pre16, the algorithm would stop at step #3, since all object type
names were required to be C identifiers.

2.8 features

2.8.1 SQL template
CREATE TABLE features (

object_type_id INT NOT NULL,
feature_name VARCHAR(255) NOT NULL,
feature_type_id INT NOT NULL,
default_value VARCHAR(1000) NOT NULL,
computed CHAR(1) NOT NULL DEFAULT ’N’,
PRIMARY KEY (object_type_id, feature_name)

);

2.8.2 Explanation
This table is analogous to the “enumeration_constants” table. It lists, for each feature:

1. The object type id denoting the object type with which this feature is associated (“object_type_id”),

2. The feature name in human-readable form (“feature_name”),

3. A feature type id (“feature_type_id”). More on this in a moment,

4. A string representing the default value (“default_value”), and

5. A one-CHAR boolean indicating whether the feature is computed (’Y’) or stored (’N’)
(“computed”).

CHAPTER 2. META-DATA 16

The attribute “object_type_id” references the “object_type_id” attribute of the “ob-
ject_types” table.

The attribute “feature_type_id” can take on values from the following two sources:

1. For standard atomic types, the value will be composite: A bitwise OR of one of the values
described in table 2.6 and possibly one of the values described in table 2.7. Note that of the
standard atomic types, only INTEGER and ID_D can have the FEATURE_TYPE_LIST_OF
bit set.

2. For enumerations, the value will be any value from the “enum_id” attribute of the “enu-
merations” table, and with the FEATURE_TYPE_ENUM #define from table 2.6 bitwise-
OR’ed in. Thus

Only FEATURE_TYPE_STRING and FEATURE_TYPE_ASCII can have the FEATURE_TYPE_AS_SET
bit set. If set, there is an additional table, OT_mdf_FEATURE_NAME_set (described in Sec-
tion 3.4 on page 23), which holds the strings as well as an id_d. Then this id_d is used in
OT_objects in lieu of the string. This is more compact, and may give a speed increase.

Only the standard atomic types (not enumerations) may have the FEATURE_TYPE_WITH_INDEX
bit set. If set, the EMdF layer will put an index on the feature. The index may be dropped again
with the DROP INDEXES MQL statement, or with the external manage_indices(1) program.
However, this bit will not be cleared by such operations. It stays there and tells the EMdF layer
to add the index to the feature if a CREATE INDEXES MQL statement is issued for the object
type, or if manage_indices(1) is invoked to create indexes on the object type.

value C/C++ preprocessor #DEFINE SQL-type in object tables
0 FEATURE_TYPE_INTEGER INT
1 FEATURE_TYPE_STRING TEXT
2 FEATURE_TYPE_ASCII TEXT
3 FEATURE_TYPE_ID_D INT
4 FEATURE_TYPE_ENUM INT
8 FEATURE_TYPE_LIST_OF_INTEGER TEXT

11 FEATURE_TYPE_LIST_OF_ID_D TEXT
12 FEATURE_TYPE_LIST_OF_ENUM TEXT

Table 2.6: Feature type ids for standard atomic types

value C/C++ preprocessor #define Meaning
(0x00000100L) FEATURE_TYPE_WITH_INDEX If set, the feature is indexed
(0x00000200L) FEATURE_TYPE_FROM_SET If set, the feature’s value is drawn from a set

Table 2.7: Feature type flags for standard atomic types

CHAPTER 2. META-DATA 17

2.8.3 Example
Examples of features are given in table 2.8.

object_type_id feature_name feature_type_id default_value computed
327680 psp 131072 pspNotAppliccable ’N’
327680 person 196608 prsNotAppliccable ’N’
327680 gender 262144 gndNotAppliccable ’N’
327680 surface 1 “” ’N’
327680 lexeme 1 “” ’N’

...
...

... ’N’
851968 phrase_type 65536 pt_NotAppliccable ’N’

...
...

... ’N’
1048576 clause_type 983040 ctWay0 ’N’

Table 2.8: Examples of features. Note how the feature_type_id has the value of 1 for strings (see
table 2.6).

2.9 min_m

2.9.1 SQL template
CREATE TABLE min_m (

dummy_id INTEGER PRIMARY KEY NOT NULL,
min_m INT NOT NULL

);

2.9.2 Explanation
This table stores the smallest monad in the database. dummy_id is always 0.

2.9.3 Example
An example is given in table 2.9.

dummy_id min_m
0 1

Table 2.9: Example of min_m

CHAPTER 2. META-DATA 18

2.10 max_m

2.10.1 SQL template
CREATE TABLE max_m (

dummy_id INTEGER PRIMARY KEY NOT NULL,
max_m INT NOT NULL

);

2.10.2 Explanation
This table stores the largest monad in the database. dummy_id is always 0.

2.10.3 Example
An example is given in table 2.10.

dummy_id max_m
0 138019

Table 2.10: Example of min_m

2.11 monad sets

2.11.1 SQL template
CREATE TABLE monad_sets (

monad_set_id INTEGER PRIMARY KEY NOT NULL,
monad_set_name VARCHAR(255) NOT NULL

);
CREATE TABLE monad_sets_monads (

monad_set_id INT NOT NULL,
mse_first INT NOT NULL,
mse_last INT NOT NULL,
PRIMARY KEY (monad_set_id, mse_first)

);

2.11.2 Explanation
The “monad_sets” table is for storing monad set IDs (built from the “sequence_2” table, i.e.,
from the SEQUENCE_OTHER_IDS sequence) and monad set names. The “monad_sets_monad”
table is for storing the actual monad sets, mse by mse.

CHAPTER 2. META-DATA 19

2.11.3 Example
As an example, consider the following tables:

monad_set_id monad_set_name
131072 Pentateuch
196608 My_book_collection

monad_set_id mse_first mse_last
131072 1 113226
196608 1 52547
196608 176800 212900
196608 394700 430154

The “Pentateuch” monad-set consists of the monads { 1-113226 }, whereas the “My_book_collection”
monad-set consists of the monads { 1-52547, 176800-212900, 394700-430154 }.

Chapter 3

Object_dm data

3.1 Introduction
In this chapter, I describe the tables needed for each object type.

There are three basic schemas for object types. The first is valid when the object type has been
declared WITH MULTIPLE RANGE OBJECTS, or hasn’t been given any RANGE declaration.
The second is valid when the object type has been declared WITH SINGLE RANGE OBJECTS.
The third is valid when the object type has been delcared WITH SINGLE MONAD OBJECTS.

In all three cases, the only table involved is:

• OT_objects

An object type that has been declared WITH SINGLE RANGE OBJECTS can only hold objects
that consist of a single monad span, i.e., a single monad set element, from A to B. An object
type that has been declaed WITH SINGLE MONAD OBJECTS can only hold objects that are
singleton sets (i.e., have only 1 monad in their monad set). An object that has been declared
WITH MULTIPLE RANGE OBJECTS can hold arbitrary monad sets.

The “range types” just described have a bearing on which fields are present. There is an
additional distinction, namely “WITHOUT UNIQUE MONADS”, “HAVING UNIQUE FIRST
MONADS”, and “HAVING UNIQUE FIRST AND LAST MONADS” . This distinction has a
bearing on what the primary key is:

1. If “WITHOUT UNIQUE MONADS” is specified (or none of these three is specified),
then the primary key will be the object_id_d. This means that there is no restriction on the
uniqueness of the first (and last) monads.

2. If “HAVING UNIQUE FIRST MONADS” is specified, then the primary key is first_monad.
This means that the user promises never to create any two objects with this object type
which have the same first monad. Objects need not be unique in their first monads across
object types: It is only within an object type that this needs to hold.

3. If “HAVING UNIQUE FIRST AND LAST MONADS” is specified, then the primary key
is (first_monad, last_monad). This means that the user promises never to create any two

20

CHAPTER 3. OBJECT_DM DATA 21

objects with this object type which have the same first and the same last monads, regardless
of whether the two objects have the same monad set or not.

If a STRING or ASCII feature is declared “FROM SET”, then a special table is created for that
feature:

• OT_mdf_FEATURE_NAME_set

This is described in Section 3.4 on page 23.

3.2 OT_objects

3.2.1 SQL template
CREATE TABLE OT_objects(

object_id_d INTEGER PRIMARY KEY NOT NULL,
-- first_monad is always there
first_monad INT NOT NULL,
-- last_monad is not there for WITH SINGLE MONAD OBJECTS
last_monad INT NOT NULL,
-- monads is not there except for WITH MULTIPLE RANGE
monads TEXT NOT NULL, OBJECTS
[... list of stored features ...]

);

3.2.2 Explanation
This table is the master table for storing objects of type OT. For each object, the following are
given:

1. The object id_d (“object_id_d”),

2. The first monad, for easy reference (“first_monad”),

3. The last monad, for easy reference (“last_monad”), and

4. The monad-set, encoded in a special way (see below).

5. Values for all of the stored features of the object.

The “object_id_d” attribute is either auto-generated from the “sequence_0” table, i.e., using the
SEQUENCE_OBJECT_ID_DS sequence, or it is explicitly given. The “object_id_d” attribute is
also the source for the special, read-only feature “self” that is on each object_dm type.

The reason why the first and last monads are here will become apparent when we discuss
how to implement MQL queries.

CHAPTER 3. OBJECT_DM DATA 22

EMdF type SQL type Comment
INTEGER INTEGER 32-bit integer
ID_D INTEGER 32-bit integer
ASCII SQL_TEXT_TYPE
STRING SQL_TEXT_TYPE
Enumeration constants INTEGER 32-bit integer
List of INTEGER SQL_TEXT_TYPE
List of ID_D SQL_TEXT_TYPE
List of Enumeration constants SQL_TEXT_TYPE

Table 3.1: SQL types corresponding to EMdF types

The last_monad column is not present if the object type has been declared WITH SINGLE
MONAD OBJECTS. The monads column is only present when the object type has been declared
WITH SINGLE RANGE OBJECTS or WITH MULTIPLE RANGE OBJECTS.

The types of the stored features are given in Table 3.1.
Note that ASCII, STRING, and lists are stored as the SQL_TEXT_TYPE, which varies be-

tween the backends. It is basically a long string. For lists, the value is a space-surrounded,
space-delimited list of integers. For example, the list (1,2,3) would be represented as:

’ 1 2 3 ’

This makes for searching with LIKE ’% 1 %’ and the like.

3.2.3 Example
In table 3.2, I have listed four objects of type Phrase.

object_id_d first_monad last_monad phrase_type
201 4 7 5
202 8 8 1
203 9 10 2
203 12 15 2

...
...

...
...

Table 3.2: Example of OT_Objects (Phrase_Objects)

3.3 Monad set encoding
The monad set encoding (in column OT_objects.monads) stores an arbitrary monad set effi-
ciently, as a text-string. The format is as follows:

CHAPTER 3. OBJECT_DM DATA 23

1. Each number is stored in a base-64 encoding that is described below.

2. The monad set is seen as a series of numbers. The current number is stored as the difference
between the actual number and the preview number (where the previous number is defined
as 0 for the first number).

3. The separator between monad set elements is the character ’y’. Thus the monad set element
chain is a ’y’-separated list of monad set elements.

4. Singleton monad set elements are just stored as that single number.

5. Non-singleton monad set elements are stored as two numbers with the character ’z’ in
between.

The base-64 encoding will be explained below. For now, let me give an example to illustrate the
principles above.

The monad-set { 1-3, 5, 7-10 } would, if we were using base-10 to store the numbers, be
stored as “1z2y2y2z3”. Let us break this down. There are three monad-set elements: “1z2”, “2”,
and “2z3”. The first translates to “1-3” because 1+2 = 3 (taking the previous “1” and adding “2”
makes “3”). The second translates to “5” because the previous was 3, and when we add 2, we
get 5. The third monad set element translates to “7-10” because “5+2=7” and “7+3=10” (again
taking the previous number and adding the current number).

The base-64 encoding is very straightforward: The 32-bit number is broken down into 5 6-bit
chunks and one 2-bit chunk (the 2 most significant bits). Starting from the chunk that has the
most significant non-null bit, each chunk is written as the 6-bit value plus 48 (i.e., ASCII ’0’).
Thus the above set would be written as exactly “1z2y2y2z3”.

3.4 OT_mdf_FEATURE_NAME_set

3.4.1 SQL template
-- This is optimized for finding string
-- string values from id_ds (for
-- querying.)
CREATE TABLE OT_mdf_FEATURE_NAME_set (

id_d INTEGER PRIMARY KEY NOT NULL,
string_value TEXT NOT NULL

);
-- This is so we can also quickly
-- find id_ds from string values
-- (for inserting/updating)
CREATE INDEX OT_mdf_FEATURE_NAME_set_i
ON OT_mdf_FEATURE_NAME_set
(string_value)
;

CHAPTER 3. OBJECT_DM DATA 24

3.4.2 Explanation
If a STRING or ASCII feature of an object type is declared “FROM SET”, this table will be
created. Any strings which are assigned to this feature of an object when it is created or updated
will be drawn from this table. Instead of storing the string in the feature, the id_d is stored instead.
This gives a space savings, and often also a time savings, especially on MySQL and PostgreSQL.
SQLite and SQLite3 may see no difference, or even worse performance. However, FROM SET
should only be used with data sets which have low cardinality. The declaration should not be
used with, e.g., “surface” or “lemma”, since they are likely to have a large number of individual
values. Better candidates would be “case”, “number”, “gender”, “part of speech”, etc., since they
usually have low cardinality. Thus FROM SET should be seen as a way of getting the same effect
as an enumeration, but with arbitrary strings instead of C identifiers as enumeration constants.

When an object is created or updated, and the object type to which it belongs has a STRING
or ASCII feature which is declared “FROM SET”, then this table is consulted to see if the
string exists in it already. If it does not, then it is added, and an id_d is assigned from the
SEQUENCE_OTHER_ID_DS sequence. Then that id_d is used in the in lieu of the string in the
object’s feature. If the string does exist in this table, the id_d from that row is used.

Note that features of type ID_D, INTEGER, and ENUM cannot be declared “FROM SET”.
This is because it makes no sense: There is no space savings, and certainly no time savings, since
in all these cases, the integer can be stored directly.

3.4.3 Example
NOTE: the following example uses FROM SET with a “surface” feature against the recommen-
dation used above.

CREATE OBJECT TYPE [Word surface : STRING FROM SET;]

word_mdf_surface_set:
id_d string_value
21 A
22 horse
23 is
24 a
25 horse.

word_objects (“A horse is a horse is a horse.”):

CHAPTER 3. OBJECT_DM DATA 25

object_id_d first_monad mdf_surface
1 1 21
2 2 22
3 3 23
4 4 24
5 5 22
6 6 23
7 7 24
8 8 25

Chapter 4

Implementing the MQL commands

4.1 Introduction
In this chapter, I treat all of the commands of the new MQL and show in some detail how they
can be implemented using fragments of SQL. I follow the structure of chapter 2 of “Towards a
new MQL.”

4.2 Database manipulation

4.2.1 CREATE DATABASE
4.2.1.1 Weeder

Nothing to do.

4.2.1.2 Symbol-checker

Nothing to do.

4.2.1.3 Type-checker

Nothing to do.

4.2.1.4 Monads-checker

Nothing to do.

4.2.1.5 Interpreter

The following needs to be done when creating a database:

1. Create the physical database in the server.

26

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 27

2. Create and initialize the “schema_version” table.

3. Create and initialize the “sequence_0”, “sequence_1”, and “sequence_2” tables.

4. Create the “enumerations” table.

5. Create the “enumeration_constants” table.

6. Create the “object_types” table.

7. Create the “features” table.

8. Create the “monad_sets” table.

9. Create the “monad_sets_monads” table.

4.2.1.6 SQL fragments

The SQL to do the above is as follows (in one transaction):

CREATE DATABASE { database_name }
CREATE TABLE schema_version (

dummy_id INTEGER PRIMARY KEY NOT NULL,
schema_version INT NOT NULL

);
INSERT INTO schema_version (dummy_id, schema_version)
VALUES (0, { schema-version });
CREATE TABLE sequence_0 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_1 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
CREATE TABLE sequence_2 (

sequence_id INTEGER PRIMARY KEY NOT NULL,
sequence_value INT NOT NULL

);
INSERT INTO sequence_0 (sequence_id, sequence_value)
VALUES ({ SEQUENCES_OBJECT_ID_DS } , 1)
INSERT INTO sequence_1 (sequence_id, sequence_value)
VALUES ({ SEQUENCES_TYPE_IDS } , 1)
INSERT INTO sequence_2 (sequence_id, sequence_value)
VALUES ({ SEQUENCES_OTHER_IDS } , 1)

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 28

CREATE TABLE enumerations (
enum_id INTEGER PRIMARY KEY NOT NULL,
enum_name VARCHAR(255) NOT NULL

)
CREATE TABLE enumeration_constants (

enum_id INT NOT NULL,
enum_value_name VARCHAR(255) NOT NULL,
value INT NOT NULL,
is_default CHAR(1) NOT NULL,
PRIMARY KEY (enum_id, enum_value_name)

)
CREATE TABLE object_types (

object_type_id INTEGER PRIMARY KEY NOT NULL,
object_type_name VARCHAR(255) NOT NULL

)
CREATE TABLE features (

object_type_id INT NOT NULL,
feature_name VARCHAR(255) NOT NULL,
feature_type_id INT NOT NULL,
computed CHAR(1) NOT NULL DEFAULT ’N’,
PRIMARY KEY (object_type_id, feature_name)

)
CREATE TABLE monad_sets (

monad_set_id INTEGER PRIMARY KEY NOT NULL,
monad_set_name VARCHAR(255) NOT NULL

);
CREATE TABLE monad_sets_monads (

monad_set_id INT NOT NULL,
mse_first INT NOT NULL,
mse_last INT NOT NULL,
PRIMARY KEY (monad_set_id, mse_first)

);

4.2.2 USE DATABASE
4.2.2.1 Weeder

Nothing to do.

4.2.2.2 Symbol-checker

The symbol checker should check that the database exists.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 29

4.2.2.3 Type-checker

Nothing to do.

4.2.2.4 Monads-checker

Nothing to do.

4.2.2.5 Interpreter

How to do this will vary from database server to database server. I don’t think it can always be
done in SQL. On the contrary, PostgreSQL seems to couple connections tightly with databases,
so it should rather be on a connection-level

4.2.3 DROP DATABASE
4.2.3.1 Weeder

Nothing to do.

4.2.3.2 Symbol-checker

The symbol checker should check that the database exists.

4.2.3.3 Type-checker

Nothing to do.

4.2.3.4 Monads-checker

Nothing to do.

4.2.3.5 Interpreter

• Drop the database. This is usually an easy DROP DATABASE statement.

4.2.3.6 SQL fragments

DROP DATABASE { database_name }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 30

4.3 Object type manipulation

4.3.1 CREATE OBJECT TYPE
4.3.1.1 Weeder

• Check that the feature “self” is not declared.

4.3.1.2 Symbol-checker

• Check that the object type does not already exist.

• Check that the enumerations exist for the features whose types are enumerations.

• Check that, within these enumerations, any default specification which is an enumeration
constant, does exist in that enumeration.

4.3.1.3 Type-checker

• Assign type-ID to each feature, based on the type-name. If it is one of the standard types,
then assign its corresponding ID (see table 2.6). If it is an enumeration type, then assign
the enum_id of the enumeration.

• Check that the type of each feature matches the type of any default specification. In doing
so, provide, in the AST, a string representing the default value for any feature that does not
have a default specification. It is an error to specify an integer if the type is an enumeration.
It must be an enumeration constant. The reason is that we must have data integrity, and
this is an easy way of ensuring that for enumerations.

4.3.1.4 Monads-checker

Nothing to do.

4.3.1.5 Interpreter

• Create the object type in table “object_types”

• Create all the tables associated with the object type (OT_objects, etc.)

• Create all the features

4.3.1.6 SQL fragments

4.3.1.6.1 Checking for (non-)existence of object type

SELECT object_type_id
FROM object_types
WHERE object_type_name = ’{ object_type_name }’

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 31

4.3.1.6.2 Checking for (non-)existence of enumeration

SELECT enum_id
FROM enumerations
WHERE enum_name = ’{ enumeration-name }’

4.3.1.6.3 Checking for (non-)existence of enumeration constant

SELECT enum_value_name
FROM enumeration_constants EC, enumerations E
WHERE EC.enum_value_name = ’{ enumeration-constant-name }’

AND EC.enum_id = E.enum_id
AND E.enum_name = ’{ enumeration-name }’

4.3.1.6.4 Creating the object type

INSERT INTO object_types (object_type_id, object_type_name)
VALUES ({ auto-generated id }, { object_type_name })

4.3.1.6.5 Creating the tables associated with the object type

CREATE TABLE OT_objects(
object_id_d INTEGER PRIMARY KEY NOT NULL,
first_monad INT NOT NULL,
last_monad INT NOT NULL,
monads TEXT NOT NULL,
[... list of stored features ...]

)

4.3.1.6.6 Creating all the features For each feature:

INSERT INTO features (
object_type_id,
feature_name,
feature_type_id,
default_value,
computed

)
VALUES (

{ object_type_id : from the creation of the object type },
{ feature_name : feature_name },
{ feature_type_id : taken from AST },

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 32

{ default_value : string from AST },
{ computed : ’Y’/’N’ based on the presence or

absence of the T_KEY_COMPUTED keyword}
)

4.3.2 UPDATE OBJECT TYPE
4.3.2.1 Weeder

• Check that the feature “self” is neither added nor removed.

4.3.2.2 Symbol-checker

• Check that the object type already exists. In doing so, store the object type_id somewhere
in the AST.

• Check that all the features that are to be removed do exist.

• Check that all the features that are to be added do not exist.

• Check that the enumerations exist for the new features whose types are enumerations.

• Check that, within these enumerations, any default specification which is an enumeration
constant, does exist in that enumeration.

4.3.2.3 Type-checker

• Assign type-ID to each feature that is to be added, based on the type-name. If it is one of
the standard types, then assign its corresponding ID (see table 2.6). If it is an enumeration
type, then assign the enum_id of the enumeration.

• Check that the type of each feature matches the type of any default specification. In doing
so, provide, in the AST, a string representing the default value, both for those feature
additions that do and those that don’t have a default specification. It is an error to specify
an integer if the type is an enumeration. It must be an enumeration constant. The reason is
that we must have data integrity, and this is an easy way of ensuring that for enumerations.

4.3.2.4 Monads-checker

Nothing to do.

4.3.2.5 Interpreter

• Add the features that are to be added.

• Remove the features that are to be removed.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 33

4.3.2.6 SQL fragments

4.3.2.6.1 Checking for (non-)existence of a feature

SELECT feature_type_id, default_value, computed
FROM features
WHERE object_type_id = { object type_id }

AND feature_name = ’{ feature-name }’

4.3.2.6.2 Adding a feature to the OT_objects table

ALTER TABLE OT_objects ADD { encoded feature-name }
{ SQL-type } NOT NULL

4.3.2.6.3 Removing a feature from the OT_objects table

ALTER TABLE OT_objects DROP { encoded feature-name }

4.3.2.6.4 Removing a feature from the features table

DELETE FROM features
WHERE object_type_id = { object type_id }

AND feature_name = ’{ feature-name }’

4.3.3 DROP OBJECT TYPE
4.3.3.1 Weeder

Nothing to do.

4.3.3.2 Symbol-checker

• Check that the object type exists. In doing so, it should store the object type id in the AST.

4.3.3.3 Type-checker

Nothing to do.

4.3.3.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 34

4.3.3.5 Interpreter

• Drop all the tables associated with the object type.

• Delete all features associated with the object type.

• Delete the object type from the “object_types” table.

4.3.3.6 SQL fragments

DROP TABLE OT_objects
DELETE FROM features
WHERE object_type_id = { object type_id from AST }
DELETE FROM object_types
WHERE object_type_id = { object type_id from AST }

4.4 Enumeration manipulation

4.4.1 CREATE ENUMERATION
4.4.1.1 Weeder

• Check that at most one “ec_declaration” has the “DEFAULT” keyword, and set a
boolean for each member of the list of declarations saying whether it is the default or not.
If none has the “DEFAULT” keyword, then set the boolean of the first item in the list to
“true.”

4.4.1.2 Symbol-checker

• Check that no other enumeration by the same name exists already.

• Check that no enumeration constant already exists by the name given in any of the ec-
declarations.

• Assign a value in the AST to each ec-declaration, either based on its position in the se-
quence, or based on its initialization.

4.4.1.3 Type-checker

Nothing to do.

4.4.1.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 35

4.4.1.5 Interpreter

• Create the enumeration using an autogenerated ID.

• Add all the enumeration constants to the table.

4.4.1.6 SQL fragments

4.4.1.6.1 Creating the enumeration

INSERT INTO enumerations (enum_id, enum_name)
VALUES ({ auto-generated id }, { name } }

4.4.1.6.2 Add an enumeration constant

INSERT INTO enumeration_constants (
enum_id,
enum_value_name,
value,
is_default

)
VALUES (

{ enum_id : The auto-generated id used to create the enum },
{ enum_value_name : ec-name },
{ value : ec-value},
{ is_default : ’Y’/’N’ }

)

4.4.2 UPDATE ENUMERATION
4.4.2.1 Weeder

• Check that at most one enumeration-constant update has the “DEFAULT” keyword, and
set a boolean for each member of the list of updates saying whether it is the default or not.
If none has the “DEFAULT” keyword, then none of these booleans should be true. Either
set a boolean in the top-level AST node of the MQL statement, or provide a function which
lets one know, whether one of the additions or updates has the “DEFAULT” keyword.

4.4.2.2 Symbol-checker

• Check that the enumeration exists already.

• Check that for all additions, the enumeration constants added do not exist already.

• Check that, for all updates, the enumeration constants updated already exist.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 36

• Check that all constants being removed do exist.

• Check whether the current default is being removed. If it is, then another default should
be specified, either as an update or as an addition (use the boolean or function mentioned
under “weeder” above).

4.4.2.3 Type-checker

Nothing to do.

4.4.2.4 Monads-checker

Nothing to do.

4.4.2.5 Interpreter

• Remove all the constants being removed.

• Add all the constants being added.

• Update all the constants being updated.

• If there was a new specification of the “DEFAULT” constant:

– Remove the “is_default” status from the current default.

– Update the new default constant so that it “is_default”.

4.4.2.6 SQL fragments

4.4.2.6.1 Checking which is the default enumeration constant

SELECT enum_value_name
FROM enumeration_constants
WHERE enum_id = { enumeration-id }

AND is_default = ’Y’

4.4.2.6.2 Checking for the (non)-existence of an enumeration See section 4.3.1.

4.4.2.6.3 Checking for the (non)-existence of an enumeration constant See section 4.3.1.

4.4.2.6.4 Removing a constant

DELETE
FROM enumeration_constants
WHERE enum_id = { enumeration-id }

AND enum_value_name = { name of constant to delete }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 37

4.4.2.6.5 Adding a constant See section 4.4.1.

4.4.2.6.6 Updating a constant

UPDATE enumeration_constants
SET value = { new value }
WHERE enum_id = { enumeration-id }

AND enum_value_name = { name of constant to update }

4.4.2.6.7 Removing the “is_default” status from the current default

UPDATE enumeration_constants
SET is_default = ’N’
WHERE enum_id = { enumeration-id }

4.4.2.6.8 Set the new default

UPDATE enumeration_constants
SET is_default = ’Y’
WHERE enum_id = { enumeration-id }

AND enum_value_name = { name of new default }

4.4.3 DROP ENUMERATION
4.4.3.1 Weeder

Nothing to do.

4.4.3.2 Symbol-checker

• Check that the enumeration does exist. In doing so, store the “enum_id” of the enumeration
in the AST.

4.4.3.3 Type-checker

Nothing to do.

4.4.3.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 38

4.4.3.5 Interpreter

• Remove all the enumeration constants associated with the enumeration from table “enu-
meration_constants”.

• Remove the enumeration itself from table “enumerations”

4.4.3.6 SQL fragments

4.4.3.6.1 Checking that the enumeration exists See section 4.3.1.

4.4.3.6.2 Removing all enumeration constants associated with the enumeration

DELETE
FROM enumeration_constants
WHERE enum_id = { enumeration-id }

4.4.3.6.3 Removing the enumeration itself

DELETE
FROM enumerations
WHERE enum_id = { enumeration-id }

4.5 Segment manipulation

4.5.1 CREATE SEGMENT
4.5.1.1 Weeder

• Check that the range is monotonic, i.e., that the second integer is greater than or equal to
the first integer.

• Check that the range consists of positive numbers.

4.5.1.2 Symbol-checker

Nothing to do.

4.5.1.3 Type-checker

Nothing to do.

4.5.1.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 39

4.5.1.5 Interpreter

• Currently, nothing. In the future: Add as a single-range monad set.

4.5.1.6 SQL fragments

None.

4.6 Querying

4.6.1 SELECT OBJECTS
4.6.1.1 Weeder

• Check everything as described in the “MQL query-subset” document.

• Check that the monad set in the AST consists of only positive, monotonic ranges.

4.6.1.2 Symbol-checker

• Check everything as described in the “MQL query-subset” document.

4.6.1.3 Type-checker

• Check everything as described in the “MQL query-subset” document.

4.6.1.4 Monads-checker

• Build the monad set of the “IN” clause, if it is there. Store the monad set in the AST. If it
isn’t there, store “1..MAX_MONAD.”

4.6.1.5 Interpreter

This should follow the retrieval functions given in the “MQL Query subset” document. Below I
list some of the SQL fragments which are needed for implementing these functions.

4.6.1.6 SQL fragments

4.6.1.6.1 Getting inst(T,U)

SELECT object_id_d
FROM OT_objects
WHERE { U.first() } <= first_monad

AND last_monad <= { U.last() }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 40

4.6.1.6.2 Retrieve features from an object

SELECT { feature-names }
FROM OT_objects
WHERE object_id_d = { object id_d }

4.6.2 SELECT OBJECTS AT
4.6.2.1 Weeder

• Check that the integer is positive.

4.6.2.2 Symbol-checker

• Check that the object type exists.

4.6.2.3 Type-checker

Nothing to do.

4.6.2.4 Monads-checker

Nothing to do.

4.6.2.5 Interpreter

Just asks the SQL database.

4.6.3 SELECT OBJECT TYPES
4.6.3.1 Weeder

Nothing to do.

4.6.3.2 Symbol-checker

Nothing to do.

4.6.3.3 Type-checker

Nothing to do.

4.6.3.4 Monads-checker

Nothing to do.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 41

4.6.3.5 Interpreter

Just asks the SQL database.

4.6.3.6 SQL fragments

4.6.3.6.1 Asking for the object types available

SELECT object_type_name
FROM object_types

4.6.4 SELECT FEATURES
4.6.4.1 Weeder

Nothing to do.

4.6.4.2 Symbol-checker

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

4.6.4.3 Type-checker

Nothing to do.

4.6.4.4 Monads-checker

Nothing to do.

4.6.4.5 Interpreter

• Ask the database server for the answer.

• Translate feature type_ids to strings. Only for enumeration constants does this involve
querying the database.

• Translate the “computed” ‘Y’/‘N’ boolean to a real boolean.

4.6.4.6 SQL fragments

4.6.4.6.1 Asking for the features of an object type

SELECT feature_name, feature_type_id, default_value, computed
FROM features
WHERE object_type_id = { object type_id }

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 42

4.6.4.6.2 Translating feature type_ids to strings

SELECT enum_name
FROM enumerations
WHERE enum_id = { feature type_id }

4.6.5 SELECT ENUMERATIONS
4.6.5.1 Weeder

Nothing to do.

4.6.5.2 Symbol-checker

Nothing to do.

4.6.5.3 Type-checker

Nothing to do.

4.6.5.4 Monads-checker

Nothing to do.

4.6.5.5 Interpreter

• Just ask the database server.

4.6.5.6 SQL fragments

4.6.5.6.1 Asking for the enumerations available

SELECT enum_name
FROM enumerations

4.6.6 SELECT ENUMERATION CONSTANTS
4.6.6.1 Weeder

Nothing to do.

4.6.6.2 Symbol-checker

• Check that the enumeration actually exists. In doing so, store the enum_id in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 43

4.6.6.3 Type-checker

Nothing to do.

4.6.6.4 Monads-checker

Nothing to do.

4.6.6.5 Interpreter

• Ask the database server for the answer.

• Convert the value to an integer and the “is_default” ‘Y’/‘N’ boolean to a real boolean.

4.6.6.6 SQL fragments

4.6.6.6.1 Asking for the enumeration constants of an enumeration

SELECT enum_value_name, value, is_default
FROM enumeration_constants
WHERE enum_id = { enumeration id from AST }

4.6.7 SELECT OBJECT TYPES USING ENUMERATION
4.6.7.1 Weeder

Nothing to do.

4.6.7.2 Symbol-checker

• Check that the enumeration exists. In doing so, store its enum_id in the AST.

4.6.7.3 Type-checker

Nothing to do.

4.6.7.4 Monads-checker

Nothing to do.

4.6.7.5 Interpreter

• Ask the database server for the answer

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 44

4.6.7.6 SQL fragments

SELECT object_type_name
FROM object_types
WHERE object_type_id IN

(SELECT object_type_id
FROM features
WHERE feature_type_id = { enumeration id }
)

4.7 Object manipulation

4.7.1 CREATE OBJECT FROM MONADS
4.7.1.1 Weeder

• Check that “object_type_name” is neither all_m, nor any_m, nor pow_m.

• Check that the feature “self” is not assigned a value.

• Check that all the ranges of monads are positive and monotonic.

4.7.1.2 Symbol-checker

• If the user specified an id_d, check that this id_d is not in use already.

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that no feture is assigned which the object type does not have.

• Make sure that all features are given a value. If a feature is not given a value, then use the
default value.

4.7.1.3 Type-checker

• Assign a type to each feature-assignment.

• Check for type-compatibility.

4.7.1.4 Monads-checker

• Build the set of monads from the monads in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 45

4.7.1.5 Interpreter

• If the user did not specify an id_d, autogenerate one.

• Insert the object and monads in “OT_objects”

4.7.1.6 SQL fragments

4.7.1.6.1 Getting the default value of all features for an object id_d.

SELECT feature_name, default_value
FROM features
WHERE object_type_id = { object type_id }

4.7.1.6.2 Inserting the object in “OT_objects.”

INSERT INTO OT_objects (
object_type_id,
first_monad,
last_monad,
... /* features */

)
VALUES (

{ object_type_id },
{ first monad },
{ last monad },
... /* features */

)

4.7.2 CREATE OBJECT FROM ID_DS
4.7.2.1 Weeder

• Check that “object_type_name” is neither all_m, nor any_m, nor pow_m.

• Check that the feature “self” is not assigned a value.

• Check that none of the id_ds in the list are NIL.

4.7.2.2 Symbol-checker

• If the user specified an id_d, check that this id_d is not in use already.

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that no feture is assigned which the object type does not have.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 46

• Make sure that all features are given a value. If a feature is not given a value, then use the
default value.

4.7.2.3 Type-checker

• Assign a type to each feature-assignment.

• Check for type-compatibility.

4.7.2.4 Monads-checker

• Get the set of monads from the id_ds.

4.7.2.5 Interpreter

• If the user did not specify an id_d, autogenerate one.

• Insert the object and monads in “OT_objects”

4.7.2.6 SQL fragments

4.7.3 CREATE OBJECT FROM (focus | all |) QUERY
4.7.3.1 Weeder

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that the feature “self” is not assigned a value.

• Check that “object_type_name” is neither all_m, pow_m, or any_m.

4.7.3.2 Symbol-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• If the user specified an id_d, check that this id_d is not in use already.

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that no feture is assigned which the object type does not have.

• Make sure that all features are given a value. If a feature is not given a value, then use the
default value.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 47

4.7.3.3 Type-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Assign a type to each feature-assignment.

• Check for type-compatibility.

4.7.3.4 Monads-checker

• Check everything that must be checked for the SELECT OBJECTS query.

• Run the query.

• Get the set of monads from the query.

4.7.3.5 Interpreter

• If the user did not specify an id_d, autogenerate one.

• Insert the object and monads in “OT_objects”

4.7.3.6 SQL fragments

4.7.4 UPDATE OBJECTS BY MONADS
4.7.4.1 Weeder

• Check that the object type is neither all_m, nor any_m, nor pow_m.

• Check that self is not assigned to.

• Check that all the ranges of monads are positive and monotonic.

4.7.4.2 Symbol-checker

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

• Check that the object type has all the features that are assigned a new value.

• Check that the features which are assigned are not computed features.

4.7.4.3 Type-checker

• Check that there is type-compatibility between the features and their values.

4.7.4.4 Monads-checker

• Build the set of monads from the monads in the AST.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 48

4.7.4.5 Interpreter

• Get the objects which are part_of the set of monads. This is a two-step process:

– Find all the objects which are wholly contained within the borders of the set of mon-
ads.

– Load each object one by one and check whether it should be included because it is
part_of the set of monads.

• Update the objects

4.7.4.6 SQL fragments

4.7.4.6.1 Updating an object

UPDATE OT_objects
SET { (feature = value), (feature = value), ... }
WHERE object_id_d = { object id_d }

4.7.5 UPDATE OBJECTS BY ID_DS
4.7.5.1 Weeder

• Check that the object type is neither all_m, nor any_m, nor pow_m.

• Check that self is not assigned to.

• Check that none of the id_ds in the list are NIL.

4.7.5.2 Symbol-checker

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

• Check that the object type has all the features that are assigned a new value.

• Check that the features which are assigned are not computed features.

• Check that the objects with the id_ds exist.

4.7.5.3 Type-checker

• Check that there is type-compatibility between the features and their values.

• Check that the objects with the id_ds are of the specified type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 49

4.7.5.4 Monads-checker

Nothing to do.

4.7.5.5 Interpreter

• Update the objects

4.7.5.6 SQL fragments

4.7.6 UPDATE OBJECTS BY (focus | all |) QUERY
4.7.6.1 Weeder

• Check that the object type is neither all_m, nor any_m, nor pow_m.

• Check that self is not assigned to.

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.6.2 Symbol-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that the object type actually exists. In doing so, store its object type_id in the AST.

• Check that the object type has all the features that are assigned a new value.

• Check that the features which are assigned are not computed features.

4.7.6.3 Type-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that there is type-compatibility between the features and their values.

4.7.6.4 Monads-checker

• Check everything that must be checked for the query.

4.7.6.5 Interpreter

• Run the query.

• Get the set of objects:

– If it is an ALL query, filter the returned set of objects by the given object type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 50

– If it is a FOCUS query, first filter by focus, then filter by object type.

• Update the objects

4.7.7 DELETE OBJECTS BY MONADS
4.7.7.1 Weeder

• Check that all the ranges of monads are positive and monotonic.

4.7.7.2 Symbol-checker

• Check that the object type exists.

4.7.7.3 Type-checker

Nothing to do.

4.7.7.4 Monads-checker

• Build the set of monads from the monads in the AST.

4.7.7.5 Interpreter

• Get the object id_ds of the objects which are part_of the set of monads. See the section on
UPDATE OBJECTS BY MONADS for how to do this.

• Delete the objects and monads from OT_objects

4.7.7.6 SQL fragments

4.7.7.6.1 Deleting an object from OT_objects

DELETE
FROM OT_objects
WHERE object_id_d = { object id_d }

4.7.8 DELETE OBJECTS BY ID_DS
4.7.8.1 Weeder

• Check that none of the id_ds in the list are NIL.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 51

4.7.8.2 Symbol-checker

• Check that the object type exists.

• Check that all the id_ds refer to objects that exist and are of the given type.

4.7.8.3 Type-checker

Nothing to do

4.7.8.4 Monads-checker

Nothing to do.

4.7.8.5 Interpreter

• Delete the objects from OT_objects

4.7.9 DELETE OBJECTS BY (focus | all |) QUERY
4.7.9.1 Weeder

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.9.2 Symbol-checker

• Check everything that must be checked for a SELECT OBJECTS query.

• Check that the object type exists.

4.7.9.3 Type-checker

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.9.4 Monads-checker

• Check everything that must be checked for a SELECT OBJECTS query.

4.7.9.5 Interpreter

• Run the query.

• Get the object id_ds from the query:

– If it is an ALL query, filter the returned set of objects by the given object type.

– If it is a FOCUS query, first filter by focus, then filter by object type.

CHAPTER 4. IMPLEMENTING THE MQL COMMANDS 52

• Delete the objects from OT_objects

4.8 Feature manipulation

4.8.1 GET FEATURES
4.8.1.1 Weeder

Nothing to do.

4.8.1.2 Symbol-checker

• Check that the object type exists. In doing so, store its object type_id in the AST.

• Check that the objects with the given id_ds exists.

• Check that the objects all belong to the same type, namely the one given.

• Check that the features exist for the given object type.

4.8.1.3 Type-checker

Nothing to do

4.8.1.4 Monads-checker

Nothing to do.

4.8.1.5 Interpreter

• Ask the database for the answer.

